Creating an AI application with Spring Boot involves integrating machine learning or AI capabilities into a Spring Boot application. For the sake of this example, I’ll show you a simple Spring Boot application that uses a pre-trained machine learning model to make predictions. For simplicity, we’ll use a popular Java machine-learning library called Deeplearning4j.
Please note that this example is quite basic, and in a real-world scenario, you might need a more sophisticated AI model, possibly trained with a more extensive dataset.
Step 1: Set Up Your Spring Boot Project
You can create a new Spring Boot project using Spring Initializr (https://start.spring.io/) with the following dependencies:
- Spring Web
- Thymeleaf (optional, for a simple web interface)
Step 2: Add Dependencies
Add the following dependencies to your pom.xml for Deeplearning4j:
<dependency>
<groupId>org.nd4j</groupId>
<artifactId>nd4j-native-platform</artifactId>
<version>1.0.0-beta2</version>
</dependency>
<dependency>
<groupId>org.deeplearning4j</groupId>
<artifactId>deeplearning4j-nlp</artifactId>
<version>1.0.0-beta2</version>
</dependency>
Step 3: Create a Simple AI Service
import org.deeplearning4j.bagofwords.vectorizer.TfidfVectorizer;
import org.deeplearning4j.models.embeddings.wordvectors.WordVectors;
import org.deeplearning4j.text.tokenization.tokenizer.TokenPreProcess;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class AIService {
private final WordVectors wordVectors;
public AIService(WordVectors wordVectors) {
this.wordVectors = wordVectors;
}
public double predictSentiment(String inputText) {
// Perform tokenization, vectorization, and sentiment prediction
// This is a simplified example; you might use a pre-trained model for sentiment analysis
List<String> tokens = tokenize(inputText);
double[] vector = vectorize(tokens);
return makePrediction(vector);
}
private List<String> tokenize(String inputText) {
// Tokenization logic here
// You might use a more sophisticated tokenizer
return List.of(inputText.split(" "));
}
private double[] vectorize(List<String> tokens) {
// Vectorization logic here
// You might use a more complex embedding model
TfidfVectorizer vectorizer = new TfidfVectorizer();
return vectorizer.transform(tokens);
}
private double makePrediction(double[] vector) {
// Simplified sentiment prediction logic
// You might use a pre-trained machine learning model for sentiment analysis
// and return the predicted sentiment score
return 0.5; // Placeholder value
}
}
Step 4: Create a Controller
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
@Controller
@RequestMapping("/ai")
public class AIController {
private final AIService aiService;
@Autowired
public AIController(AIService aiService) {
this.aiService = aiService;
}
@PostMapping("/predictSentiment")
public String predictSentiment(String inputText, Model model) {
double sentimentScore = aiService.predictSentiment(inputText);
model.addAttribute("sentimentScore", sentimentScore);
return "result";
}
}
Step 5: Create a Simple Thymeleaf Template (result.html)
<!DOCTYPE html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<head>
<meta charset="UTF-8">
<title>AI Prediction Result</title>
</head>
<body>
<h2>Sentiment Score: <span th:text="${sentimentScore}"></span></h2>
</body>
</html>
Step 6: Run Your Application
Run your Spring Boot application, and you can access it at http://localhost:8080. This example provides a simple web form where users can input text, and the application will provide a sentiment score based on the simple logic implemented in the AIService class.
Leave a comment